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1 BACKGROUND

Crystals are solids in which the molecules are arranged in clearly defined 3D
patterns. Liquid crystals are substances whose constituent molecules retain
the spatial regularity of solid crystals, but, at the same time, have the freedom
of motion of molecules of a conventional liquid.

Common usage of liquid crystals includes household appliances such as
microwave ovens, CD players, or thermometers and even wrist watches, but
they have an increasingly visible application as the main component in LCD
monitors. In fact, the acronym “LCD” stands for liquid crystal display.

Liquid crystals can be classified by the type of directional and positional
ordering of the constituent molecules into several categories (phases), of
which the most common is the nematic phase. This is the type used in
LCD monitors, and is the object of our study. The molecules of a nematic
liquid crystal have a cylindrical shape, and can move randomly. Having one
axis longer than the other two, it makes sense to talk about orientation of
these molecules, which can be modeled mathematically by a unit vector field

~n = ~n(x1, x2, x3)

called director. The one defining property of nematics is that in the absence of
external factors such as electro-magnetic fields, or temperature fluctuations,
the director is roughly spatially invariant. That is, the cigar shaped molecules
tend to align themselves with their long axis parallel to a preferred direction.
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The orientation of the molecules determines the optical properties of the
material. This means, for instance, that controlling what is being displayed
on an LCD monitor, amounts to controlling the director vector field ~n.

The director vector field ~n of a liquid crystal minimizes an energy func-
tional (termed free energy) of the form

E(~n) =

∫
Ω

F (~n,∇~n) dω (1)

subject to the constraint

|~n| = 1

In the absence of an electric or magnetic field, the free energy density is
given by

F (~n,∇~n) = K1|∇ · ~n|2︸ ︷︷ ︸
splay

+K2|~n · (∇× ~n)|2︸ ︷︷ ︸
twist

+K3|~n× (∇× ~n)|2︸ ︷︷ ︸
bend

(2)

In any medium (not only liquid crystals), an electric field E is accom-
panied by a magnetic field H, related by a pair of equations (Maxwell’s
equations):

−∂tB = ∇× E
∂tD = ∇×H

(3)

in which D is the electric displacement field, B is the magnetic inductance
field, each defined by the following two constituent equations:

D = εE + P (4)

B = µH +M (5)

In equations (4) and (5), P and M are the electric and the magnetic polar-
izations, respectively. In general, P depends on E and M depends on H.
The electric permittivity ε and the magnetic permeability µ are, in general,
functions which may depend on the position vector and on the optical and
magnetic properties of the medium, respectively.
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It has been shown (see e.g., [1]), that in the case of a nematic liquid
crystal, the electric displacement is equal to

D = εE + ∆ε(~n · E)~n (6)

Moreover, an electric field E applied to an electric field modifies the
infinitesimal energy F (~n,∇~n) by the amount

FE = −∆ε

2
(~n · E)2 (7)

and similarly, a magnetic field has an infinitesimal contribution

FH = −∆χ

2
(~n ·H)2 (8)

Thus, the presence of an electric field and a magnetic field produces a
free energy density given by

F (~n,∇~n) = K1|∇ · ~n|2︸ ︷︷ ︸
splay

+K2|~n · (∇× ~n)|2︸ ︷︷ ︸
twist

+K3|~n× (∇× ~n)|2︸ ︷︷ ︸
bend

− ∆ε

2
(~n · E)2︸ ︷︷ ︸
electric

− ∆χ

2
(~n ·H)2︸ ︷︷ ︸

magnetic

(9)

2 OBJECTIVE

The objective is to study light propagation through a nematic liquid crystal.
This includes modeling of the phenomenon (by finding the relevant quanti-
ties and the equations that these quantities satisfy), and trying to solve the
resulting equations.

In general, when solving differential equations, one must prove:

• existence of solutions

• uniqueness of the solutions

• regularity

In addition, a numerical implementation of the solutions (if they exist) is
desirable.

3



2.1 Light propagation through liquid crystals:
Proposed model

Light is simultaneously both an electric field an a magnetic field (E and H,
respectively). Its propagation through any medium is completely described
by Maxwell’s equations (3), and depends on the optical properties of that
medium. In the case of nematic liquid crystals, the most important factor is
the orientation ~n of the constituent molecules, so definitely E and H depend
on ~n.

In a linear medium, the electric polarization P and the magnetic polariza-
tion M are both zero, by definition. See equations (4), (5) and especially (6).
Consequently, FE = 0. Similarly, FH = 0. That is, light passing through
a linear medium does not change the director vector field ~n. To see how
light propagates through the crystal, Maxwell’s equations must be solved ir-
respective of the free energy density (2), by assuming that ~n is given (as an
equilibrium state of the free energy), and that it is independent of E and H
(but not the other way around).

In the case of a non-linear medium, a powerful polarized light can modify
the molecular structure of the crystal, due to the non-zero polarization, and
this is reflected by equations (6), (7) and (8). Maxwell’s equations contain
~n explicitly and the free energy density (9) contains at least one of E or H.
Therefore, ~n, E and H are coupled (depend on each other), and must be
determined simultaneously.

We model light propagation through a liquid crystal by the following
minimization problem:

Problem 2.1 Minimize

E(~n,∇~n,E,H) =

∫
Ω

(
K1|∇ · ~n|2 +K2|~n · (∇× ~n)|2 +K3|~n× (∇× ~n)|2−

∆ε

2
(~n · E)2 − ∆χ

2
(~n ·H)2

)
dω

subject to

−∂tB = ∇× E
∂tD = ∇×H
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D = εE + P

B = µH +M

and
|~n| = 1.

Remark 2.1 The contributions FE and FH of an electromagnetic field to
the free density F (~n,∇~n) were derived elsewhere by other researchers. The
addition of FE and FH to F assumed that E and H did not depend on ~n,
nor of each other. Minimization of the free energy (1) was still performed
after ~n alone.

Neglecting the coupling of E and H via Maxwell’s equations, as well as
their dependence on ~n is no longer reasonable in the case of light passing
through a liquid crystal, because Maxwell’s equations are the very equations
that describe the propagation of light.

In our model, the free energy E is minimized after ~n, E and H, and E,
H and ~n are assumed to depend (a priori) on each other.

3 METHODS and RESULTS

3.1 The Euler-Lagrange equations

One first step towards finding a solution is computation of the Euler-Lagrange
equations for the functional E , which can be done using standard methods
from the calculus of variations [2, 3]. In the absence of any constraints, for
any functional defined as in (1), these equations take the form

3∑
β=1

∂

∂xβ

( ∂F

∂(∂βnα)

)
− ∂F

∂nα
= 0. (10)

The system (10) represents the Euler-Lagrange equations of E, and in-
volves ~n and its derivatives. We computed explicitly this system for F given
by equation (2). We state the result below.

3.2 Derivation of model equations

First, we study the propagation of light in a nematic liquid crystal in the
presence of an electric field E. We derive a system of coupled equations for
the reorientaion of the liquid crystal director ~n.
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Consider the time harmonic Maxwell’s equations (time dependence eiωt.
The electric field E has the form

E(x, t) = E(x)eiωt + Ē(x)e−iωt.

Assume that the light wave propagates normally to the liquid-crystal
medium and that the initial orientation of the director is along z and that
the director can change its direction in the (x, z) plane and, therefore, we
write the vector components of the director in the form

~n =< sinφ(z), 0, cosφ(z) > .

Then using this form of the director ~n, the free energy density can be
derived as

F (~n,∇~n) = (K sin2 φ+K cos2 φ)(
dφ

dz
)2.

We also assume that dielectric coefficient ε is of the form εij = ε⊥δij +
εaninj, where εa = ε‖−ε⊥, and ε‖, ε⊥, are the liquid crystal dielectric constants
at the director parallel and perpendicular to the electric field, and i, j =
1, 2, 3. Hence the dielectric coefficient ε becomes

ε =

ε⊥ + εa sin2 φ 0 εa sinφ cosφ
0 ε⊥ 0

εa sinφ cosφ 0 ε⊥ + εa cos2 φ

 ,

and the electric contribution to the total energy can be written as

FE = εa[sin
2 φ|E1|2 + cos2 |E3|+ sinφ cosφ(E1Ē3 + E3Ē1)− ε⊥|E|2].

3.3 Results

Minimizing the free energy with respect to the director ~n (the angle φ), using
the Euler Langrange equations, we get the following equation for the director

K
d2φ

dz2
+
εaε⊥(εa + ε⊥|E|2 sin 2φ

(ε⊥ + εa cos2 φ)2
= 0 (11)

From the Maxwell’s equations, we obtain the following equation for the
electric field E =< E1(z), 0, E3(z) >.

d2E1

dz2
+ ω2µ(ε⊥ + εa sin2 φE1 + εa sinφ cosφE3) = 0, (12)
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d2E3

dz2
+ ω2µ(εa sinφ cosφE1 + ε⊥ + εa cos2 φE3) = 0. (13)

We now solve numerically the coupled nonlinear equations (11)-(13), for
0 ≤ z ≤ L. We use the boundary condition φ(0) = φ(L) = 0. We also assume
the electic field is given as the sum of the incident end reflected waves for
z ≤ 0 and the outgoing waves for z ≥ L,

E =

{
Eince

ikz + Erefe
−ikz, z ≤ 0

Eoute
ikz, z ≥ L

)
.

This numerical implementation is work in progress.
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